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THE RESPONSE OF PRESSURE MEASURING SYSTEMS
TO OSCILLATING PRESSURES

By Israel Taback
SUMMARY

A method is presented for calculating the response and lag in

© pressure measuring systems subJected to steady-state sinusoidally
verying pressures. The pressure system ls assumed to consist of an
inlet restriction, tubing length, and connected instrument volums. The
material presented is limited by the fact that no theoretical msthod of
predicting the attenuation characteristics of the tubing is given. This
limitation is not severe, however, as this characteristic may be experi-
mentally determined for given tube sizes and pressure frequencies.

Experimental date for some sample systeme tested are presented and
show good agreemsnt wlth calculated values. The resulis are presented
in such fashion that the quallitative effect of varying the dimensions
of system components 1s apparent. It is therefore possible, once the .
attenuation characteristics of the tube are determined, to design a
system with a required frequency response by a trial-and-error variation
of parameters.

JNTRODUCTION

Of major iInterest in many test installatlions is the response of
pressure-distribution systems to rapldly varying pressures, both where
these pressures must be accurately measured and where unwanted escilla-
tions must be filtered out or eliminsted. When such pressures are
measured, the pressure sensing element 1s normally ingtalled as close
to the point of measurement as possible. When this installation 1s
not feasible, connecting tubing must be employed with the consequent
possibility of errors caused by resonance or attenuation in the tube.
Methods of calculation of the response of pressure systems to small-
amplitude steady-stete sinusoldal pressures based upon electramechanical
analogies have been previously developed (reference l), but 1ittle use
has been made of these methods, both because of the large amowumt of
tedlous calculation necessary for the solutlon of even simple pressure
systems and because of the lack of Information as to whether the
equations were valid for pressure oscillations of large amplitude. This
paper has been prepared to present a more convenlent method of calculating
response and lag in pressure systems. The main emphasis has been placed on
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simplifying the necessary equations to the point where they can be easily
applied to practical instrumentation problems. The material consequently
is in such form that the qualitative effect of varying the compcnents of
a pressure system is easlly visualized.

In support of the theoretical mothods presented, experimental data
have been secured on various pressure systems in the frequency range up
to TO cycles per second. Both the frequency range and pressure systems '
tested were chosen as being representative of comditions which would be
encountered in flight and wind-tunnel installations.

SYMBOLS
a velocity of propagation, feet per second
A attenuation factor, secondsl/2 per foot’
C capacity, farads
E voltage, volts
£ frequency, cycles per second ]
T tube resonant frequency, cycles per second
I current, amperes
k ratio of specific heat, °P/°V
1 tube length, feet
L inductance, henries
Pav mean pressure in tube, pounds per square foot
AP pressure difference, pounds per square foot
r radlus, feet
R resistance, ohms
v volume, cublc feet
Y shunt admittance of tube, foot” per pound-second
A serles lmpedance, pound-seconds per foot”
A characteristic impedance of tube, pound-seconds per footd




NACA TN No. 1819 3

a attenuation constant, 1/feet
B propagation constant, radians per foot
P wave length, feet

Pav mean denslty in tube, slugs per cublc foot

1l coefficient of viscosity, pounds per foot-second
o angular frequency, radians per second
Subscripts:
d quantity existing at Inlet restriction or restriction parameter
r guantlty existing at instrument or instrument parameter
S quantity existing at pressure-system inlet
THEORY

General Theory

The measurement of rapidly varying presBures requires 1n most cases
that a pressure Instrument be connected to the mea.e;uring point through a
finite length of conmnecting tube. The tube opening may be restricted by
a connector of smaller opening, either because of aerodynamic conslder-
ations or because the response of the measuring system to the oscillating
pressures must be adjusted. In most cases exposing the pressure-
measuring diaphragm to a reference pressure 1s necessary. This procedure
requires that the dlaphragm be installed so that it is exposed to a refer-
ence pressure volume which may be connected by means of tubing to a
reference pressure source. The reference volume and comnecting tubing
18 heresinafter referred to as the reference pressure system. For the
purpose of the following analysis, it will be considered that: (1) the
response of the instrument may be separately evaluated or 1is constent
throughout the freguency range, and that (2) deflections of the sensitive
element are sufficiently small so that negligible changes in internal
volume occur and no energy is transferred to the reference pressure
systems.

The air column in & tube has mass inertia, elasticity, and can
dissipate energy with its motlon; consequently, as 1is generally known,
wave motion can be propegated along its length. The egueticms governing
this motion have been previously derived for small-amplitude pressure
variations (references 1 and 2) and are exactly similar to the equations
which govern the propagation of electrical waves on transmission lines.
As these equations already have been developed, it 1s relatively easy

e e e e i e e e A ——— —— b e s e A e i et e
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%o describe the behavior of the pressure sysbtem in terms of the analogous
electrical system by use of the usual electriceal notation (reference 3).

The electrical terms and the equivalent acoustical terms used herelin are

shown in the following table:

Electrical Equivalent-acoustical
Term Unlt |Symbol Term Tnit Symbol

inductance| henries| L inertance Pound-gecondgezper L
foot

capacity |farads C volumetric | foot? per poumd ,C

. capacity .

resistance| ohms R flow resistance pound-%eccnds per R
foot

current amperes I volume flow Peet3 per second Q

voltage volts E pressure pounds per foo P

In acoustical terms (reference k), the inductance per unlt length of line

L = PEY  tne capacitence per wnit length € = ZEo—, and the resistance
w2 kPav

per unit length R =:%§ (the latter being dependent on the type and
amplitude of flow).

The behavior of the system can then be defined by the general
equatlions for a transmission line

Eg = Bpcosh V&Y 1 + InZgsinh VZY 1 (1)
Tg = Tycosh VBT 0 + 2% stnh V2T 1 @)
. )
vhere )
7 =R+ juL
Y = C

The quantity \VZY 1is a complex number and may therefore be written as

\/ﬁ= a+ JB (3)

where o 18 an attenuation constant determined by the decrement in
pressure amplitude per length of tube and B 1is a propagation constant
or phase-angle change per unit length of tube as defined by the following
equation: )

_ 2nf
" Propagation velocity

B
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The quantlity Z, 1s designated the characteristlc impedance of the tube

o =\§ = G - @

Equation (1) may be rewritten to give

Es

7
= = cosh \[Z¥ 1 + —Zg sinh \[Z¥ 1 (5)

Substituting equation (3) into equation (5) and simplifying by trigono-
metric substltutions glves

% =\/E:nh2a.2 + cos”p1 /tan'l(tan B1 tenh al)

7 ‘
(o} 2 2 ~1f{tan Bl
+ Z;VSinh al + sin“p1 Zkan (l n o3 (6)

Equation (6) defines the ratio of the voltage or pressure amplitude
at the opén end of the tube to the amplitude exlsting at the pressure
capsule. The reciprocal of this ratio is called herein the response of
the system. The right-hand terms in equation (6) are given in polar
coordinates and must be added vectorially at the indicated angles.

Simplified Theory

Characteristics of system having negligible instrument volume.- If
the pressure capsule is sufficiently small, negligible alr flow occurs at

the instrument end of the tube, Z,, approaches Infinity, and equation (1)
reduces to

.:P_S=-E—§=coshv—Z'TZ (7)
r Ep
s _ <smh2az + cos%?l/e/tan“l(tan Bl tanh al) (8)
PI‘

Further, i1f the tube is of suffliciently large diamster, negligible
attenuation of the pressure wave occurs in the tube, a approaches zero,
and equation 8 simplifies to

Py :
T cos Bl (9)

e e e ¢ e o e o -+ ek o = T e
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At resonance freguencies, equation (9) becames zero and the

response -;é becames infinite. The following simple relationship can

then be derived for the determination of the resonant frequency:

cos Bl =0 (10)
_ 2%l _x 3x 5x
Pl=—o =% 2% " (11)
where
.2 3Ja 28
£o = 155 135, e (12)

where f, 1s the resonant frequency of the tube with no attached volume.
As the wave length of a pressure wave is given by the relation fA = a,
equation (12) indicates that, at resonance frequencies, the tube length
is an odd multiple of 1/4% wave length.

Figure 1 is a plot of response and phase angles based on equations (8)
and (9) for simple systems having zero or finlte attenuation.

Characteristics of system having an inlet restriction.- In a similar
system having negligible Instrument volume so that I approaches zero,
the effect of adding a constriction at the tube Inlet may be evaluated as
indicated in the following discussion.

For restrictions which are short in length campared to 1 wave length,
the flow Impedance consists of a reslistance caused by viscous pressure
losses and an inertance caused by the mass of air in the restriction.

As derived In reference 5,

a (8 Lk >
2y = + = 1
a xrg® \rg° 33Dpav ) (13)

This impedance causes a pressure loss,
Es - Bs' = IsZg (14)

where Eg 1s the applied pressure and ES' is the pressure applied
to the tube past the restriction.

From equations (1) and (2), wvhen I, equals zero

Eg' =I.,‘rcosh\fffl . . (15)
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IS=Z&0sinh\]Efz (16)

By the substitubtion of values from equations (15) and (16) into
equation (1k), ,

- 1 gz
%&:%m\/ﬁz (17)
%—f"-r =1 +§L1 tanh(al + JB2) (18)
S (o}

Equation (18) was derived to secure the ratio of the Pressure applied
to the pressure existing ih the tube past the restriction. The magnitude of
the oveér-all response of the tube and restriction can now be secured by
multiplying the effectiveness of the restriction, as given by equation (18},
by the relation for the tube without the restriction, as given by equation. (8).

z
= E + =2 tann(al + JBZﬂ (sin.hzor.l + cos2paz)1/2 [ten 1 (ten B tenh «i)
. (0]
(19)

The effectiveness of the restriction can be shown to vary with the
applied frequency and the tube characteristics. In order to visualize the
effect of the canstriction on the response of the system, equation (18)
may be rewritten by trigonometric substitution

Es Z3( tenh ol + J ten BI
BT =1 Y Z\T+ J temn «f ten B2 (20)
At antirescnance frequencies (Bl = 0, x, nx),
tan Bl = O and equation (20) reduces to
Es Zq
=1 + — tanh al 21
BT 7o (21)
At resonance freguencies (sz = g, %?, %?),
tan Bl = © and equation (20) reduces to
E Z
S -1+ d 1 (22)

Eq' 7o tenh ol

ST TIIRA an cem s v i L e e e s = e A . = e ey e m ) —n e e e o e o,
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For the case of a resonant tube +tanh ol << 1 and therefore 1t cean
be seen from equations (21) and (22) that the restriction is extremely
effective In reducing large amplitude resonances but has only a negli-
glble effect at antiresonance frequencies.

In the case of a large~diamester tube whereln the attenuation is
negligible, a approaches zero and equation (19) reduces to

PS__ES : 23 .

.ITr_-E—;_<1+Z—Otanh ,jBZ)cos Bl (23)
;—S = cos Bl + J—é—d sin B1 (2k)
b o

The Impedance of a small-diemster constriction 1s almost a pure
reslistance since the viscous forces which cause pressure losses are much
largsr than the Inertia forces caused by the mass of air in the constric-
tlon. The ratio of the impedances Zd_/Z therefore closely approaches
a real number and equation (24) can be revmit‘ben in polar coordinates to

glve '
% = E05231 +<—-— gin 57) ]l/ tan BZ) (25)
Z

d
When 7o =1,

==1/p1 . : (26)

A plot of equation (25) is glven In figure 2 Ffor two assumed veluss
of the ratio Zz/Z,. As noted previously, the restriction at the tube
inlet 1s extremely effective at resonance fregquencles but has no effect
upon the response at antiresonance frequencies. The principal difference
between an adjustment to the response of a system by means of small-
diameter tubing or an inlet restriction mey be clearly seen from a com-
parison of figures 1 end 2. Although it is possible, by use of a large-
dlameter tube and a sultables Inlet restrlction, to secure unit response
over a large frequency range, the use of a small-dliameter tube inherently
causes decreased response at higher frequencies.

Characteristics of pressure systems haying Instrument volumses.-
Pressure-measuring instruments which ars designed to have uniform response
over a wide range of frequencies are necessarily designed with high- .
frequency, low-deflection-type diaphragms. The Instrument impedance in
such case 1g a functlion only of 1ts volumetric capacity and can be written

A kPqv e7)
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The characteristic impedance of the tube as gifen by equation (4) is

_ o+ gp (o1 + 3B)KPy
p4 Jomr2y

> (28)

The ratio of these impedances, which appears 1n equation (6), is

Zo _ Vy 2 21/2{ -1
.Z—r "EK‘”) + (BZ)J tan a (29)

For a given tube dlemeter and length the value of equation (29) depends
directly on the ratlo of the volume of the Instrument to the total volume
of the tube. Equation (6) may now be altered to include only values of
real quantities eand phase angles,

5s
Pr

-
- (sinhecrl + coszsz)l/el ten L(ten 1 temh al) . + —= Eaz)z
el

# @ (e + satw) (gl ) [ (E) 0

In the case of a large-diameter tube in which a approaches zero,
equation (30) reduces to

P V.
§§ = cos Bl - x
v '

ﬂrzl

A plot of equation (31) is given in figure 3 for two values of the

Bl sin Bl (31)

ratio

s
L ., The plot indicates that the rescnant frequency of & pressure
1

system decreases with an Increase In instrument volums. It also shows
that instruments having volumes of the same order of magnitude as the
total tube volums cause a significant decrease In response at higher
frequencies.

At the resonant frequency of the tube with attached instrument
volume, equation (31) may be set equal to zero so that

-
cos Bl = —X— B1 sin B1I (32)
nrel
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Then,
Vy _ cot Bl (33)
xrel Bl
If values from equations (11) and (12) are substituted in equation (33),
P'e
cot( resonance)
1 Tresaonance (34)
2 fo

Equation (34) offers a simple method for estimating the lowest resonance
frequency of a tube and volume system. This equation 1s plotted in '
figure 4 so that 1t is possible, if only the physical dimensions of a
pressure system with negligible tube attenuation are known, to use this
chart to dstermine the resonant frequency of the system.

Effect of apprecieble instrument deflectlons and reference pressure
systems on the response of pressure systems.- The analysis of the response
of a pressure system when the pressure dlaphragm is sufficiently deflected
g0 that 1t can transmlt emnergy into a reference pressure system is con-
sidered beyond the scope of thls work. Although the effect on the response
is small In most cases, experimental eyldence of the character of these
effects is shown herein.

LIMITATIONS OF THEORY

Numerlcal solutlons of the equatlons presented herein can be secured
1f the paremeters B and « are known. The valus of B can be calcu-
lated from the velocities of propagation plotted in figure 5. This
figure is based on the Rayleigh formmla for propagation in tubes (refer-
ence 2) and,for ease of camputation, upon a velocity of propagation
of 1000 feet per second In free alr. Values of o have been calculated
by various investigators for sound pressure amplitudes; however, it is
difficult to predict 1ts value for large pressure amplitudes since steady-
state leminar flow does not exlist in the tube. Reference 6 presents a
semiempirical equation which Indicates that the attenuvatlon constant a«
varies with the followlng factors:

(a) Directly as the square root of the applied fregquency
(b) Inversely as the square root of the mean density of the fluid

(c) Inversely with the tube diameter
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(d) Directly as the square root of the "effective viscosity." The
"effective viscosity 1ls shown to depend upon the Reynolds number of the
flow in the tube, which in twrn is directly dependent upon pressure
ampllitude and frequency.

The effects of factors (a) and (c) on the yalues of a have been
checked by the experimental data presented; however, lack of sultable
equimment has made 1t Impossible to generate large-amplitude pressures
at various mean densities to substantiate factors (b) and (d).

The lack of any msthod for calculating the attenuation constant
directly limits the general application of the preceding equations. An
experimental determination of @ 1s possible, however, by making
measurements on a simple system (long tube with no restriction and
negligible instrument volume) and then applying the experimentally
determined value to the calculation of more complicated systems. For
the range of pressure amplitudes and frequenciles covered in this investi-
gation, values of o have been determined experimentslly and the results
are given in the section entitled "Experimental Investigation.”

It 1s important to note that in many practlcal applications wherein
the primary consideration is en estimate of rescnance and antirescnence
frequencles, sufficient accuracy can be secured by assuming that the
attenuation constant o 18 negligible. In such cases, the equations
presented for tube systems having zero attenuation can be applied with
consequent reductlion of computation tims.

EXPERIMENTAL INVESTIGATION

Apparatus and Tests

A schema of the test setup is given in figure 6. The pressure
source used in these tests consisted of a piston, driven by a varlable-
epeed electric motor, in a cylinder surrounded by & clearance volums-.
Adjustment of pregsure amplitude was achieved by varylng the clearance
volume or altering the stroke of the crank and connecting-rod mechanism
driving the plston. Dilrectly connected to the cylinder was a standard
NACA mechanical-optical pressure recorder, which was used as a pressure
standard. This ingtrument consists of a corrugated diaphragm assembly
having an Intermal volume of 0.2 cublic Inch surrounded by a reference
volume of approximately 1.2 cublc Inches. Deflections of the diaphragm
are converted by means of a bell-crank tilting-mirror linkags -into
deflectlons of a record line on a photographic film. The natural
" frequency of this instrument was sufficiently high to require no correc-
tlons for its response. Another commection from the pressure generator
led to the pressurs system under test. The pressure systems tested
consisted of various lengths of neoprens pressure tubing varying in

diameter fram %‘-inch to %—inch inside diemeter with connected restrictions

e e e P————~ T ¢ ;r—— A o —— = T L ¢ e ¥ . T " g < =
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and volumes .~ The pressure generator supplied oscillating pressure ampli-
tudes up to-t 10 inches of water at frequencies ranging fram O to

70 cycles per second. Records of the generated pressure as determined by
the reference-pressure cell, pressures existing in the test instrument,

and i]-'(-)--second timing marks were all recorded on the same film. The tests

were made in the Flight Tnstrument Develomment Section of the Langley
Instrument Research Division.

Results of Amplitude Response Tests

Simple tube system with negligible Instrument volume.- Figures T

and 8 summarize the results of tests made with -8]=-inch and -J%—inch-inside-

diameter tubes with applied pressure amplitudes of ¥ 10 inches of water.
The length of tube, given in wave lengths, is calculated from the
velocity of propagation as given in figure 6 and the relation a/f equals

wave length. In figure T the response of systems using %—-inch—inside-

dlameter tubing is seen to be such that large attenuation of pressure
amplitude occurs in the main portlion of the Frequency range up to 70 cycles

per second. Figure 8 indicates that the attenuation in fg—mch-inside—

diemeter tubes 1s small enough so that, with sultable damping of the
resonénce peaks, the response through a large. frequency range can be

' made to approximate wmity. Tests made on other tube lengths not shown
in these figures fair in well with the plotted curves.

Based upon figures 7 and 8 and equation (8), the attenuation
constant o was determined for both tube dlemeters. The attenuation
constant was found to very with the square root of the applied frequency.

Values of the attenuation factor A are plotted in figure 9. The
value of A as calculated fram equation (8) is apparently not constant
for the shorter tube lengths; however, this effect is actually caused
by the finite volume of the pressure capsule. The valuss of A. °
asymptotically approach their trus value for the longer tubes since the
attenuation in the tube becomes the determining factor in the over-all
response. The values of o +thus determined are as follows:

For %— inch-inside-diameter tubes,

For %—inch-inside-diamster tubes, .

a = 0.0065\F
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The curves of figures 10 and 11 have been calculated on the basgis
of the attenuation factor for the {%—inch—inside-di&meter tube. The

variation between the calculated response curves for zero instriument
volume and for 0.21 cubic inch instrument volume shows the effect of

the volume of the instrument used (fig. 10). The experimental points

for the 10-foot tube with an instrument volums of 0.21 cubic inch
approximate a theoreticel curve for a 10-foot tube with no volume
attached which has an attenuation constant equal to 0.01L. The compariscn
shown In figure 10 between these experimental points and the theoretical
curve for zero volume indicates that except at resonance frequencies a
relatively large varlation in the attenuation factor causes only minor
changes in the gemeral characteristics of the response curve.

Tube with inlet restriction.- Figure 11 illustrates the correlation
between the calculated response curves and the experimental data tor a
10-foot tube with and without an Inlet restriction subjected to
pressure smplitudes of + 10 inches of water. The damping restriction,
as previously indicated, is placed at the open tube end. The main effect
of the damper at resonance frequencles and the elmost negligible effect
at antiresonance frequencies should be noted on these curves. Inasmuch as
the experimental data for a i%—inch-inside-diametér;%finch-long connector
seem to correspond more exactly to the calculated values for a connector
of twice this length, the losses in this comnector can be assumed to be
larger than those predicted by equation (13). These added losses are
attributed to the Inlet and exit losses of the comnector and to the fact
that steady laminar flow does not exist in the comnector.

Tube with appreciable Instrument volime .- Figure 10 ailso indicates
the response to sinusoidal pressure amplitudes of + 10 inches of water

of a 10-foot length of 1%—inch—insid5—diameter tubing with volumes

of 3.05 cublc inches and 6.1 cubic inchés added adJjacent to the recording
instrument. The correlation between calculated and experimental curves
indicates that although a high percentage accuracy has not.been

achieved, good agreement exists insofar as response-curve shape and
attenuation characteristics are concerned. The effect of Increasing

the recording instrument volume is seen to be a lowering of the

resonant frequency of the system and a decrease in amplitude of the
recorded pressures throughout most of the frequency range.

Effect of same reference pressure systems on the response character-
lstics of a pressure system.~ When pressure recorders are connscted to

both a pressure measuring system end a reference pressure system, appreci-
able interaction and emergy transfer may occur, which can alter signifi-
cantly the response of the entire system. The calculation of the
response of such systems 1s considered inadvissble since it is necessarily
tedious and the accuracy.is questionable. Figure 12 is included as
representative of the interactions which occurred with the capsule
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employed in these tests in a test setup designed so that the interaction .
was very pronounced. The varlations in the respomse curves are typical
of coupled systems which may be encountered in practice. The equivalent
pressure and electrlical systems are schematically shown in the sams
figure. It should be noted that these effects may be decreased or
eliminated by enlarging the reference volume surrounding the measuring
element so that 1ts equlivalent electrical capaclty becomes extremely
large and approaches a short circult.

Results of Phase~Shift Determination

Flgure 13 illustrates the correlation between calculated and experi-
mental lag curves for 10 feet of f’é-inch-inside-diameter tubing with

various added volumes. The response curves of figure 10 show that the
following general characteristlics are common to the lag curves of flgure 13:

(1) The phase angle shifts relatively slowly until a rescnance
frequency is reached, at which time the phase changes rapidly through 90°.

(2) The lag remains almost consteant at approximetely 180° fram
frequencles above resonance through the first antiresonance frequency
and then increases to larger values.

(3) The rate of change of lag angle with increasing frequency becomes
more and more linear as the magnitude of the amplitude response at
resonance becames smaller and smaller.

Sample Calculation

Equation (20) has been presented in such form that the response and
lag may be arithmetically calculated. Teble 1 Indicates the calculations

necespary for the determination of the response of 10 feet of -i%-inch-

inside-dlameter tubing with an added volume of 0.61 cubic inch. All
canmputations are arithmetic except that for column @ , which may be
done graphically with 1ittle labor. The determination of the response
Tor various other added volumes can be easlly made by recalculating

columns @, @, a:nd@ only.

CORCLUSIONS

A method has been developed for estimating the dynamic response of
pressure systems subJected to steady-state oscillating pressures which
can be applied to the design of these systems either to secure good
response over a desired frequency range or to eliminate unwanted
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resonsnces when only a mean pressure level is desired. Although no
method of predicting the attenuation constant of various tubing under
all pressure conditlions has been presented, this attenuation constant
may be determined experimentally In a simple tubs system and used for
the design of other more ccmplicated systems.

Even in long tubes of small dismeter (that is, 20 ft of i%—in.-I.D.

tubes), resonances can occur which cennot be lgnored in the Interpreta-
tion of recorded datea. The resonance frequency range for tubes of
approximately this length is the frequency range in which airplane
buffeting may occur and airplanes passing through contiguous atmospheric
gusts may also be subJected to pressure cycles in this range. The
direct Interpretation of such recorded data without reference to the
effect of the recording system will lead to erroneous results.

It can be concluded from the material presented that for accurate
dynemic-pressure measurements the first resonant frequency of the
pressure-measurement system should be kept well above the highest
pressure frequency to be measured. This result can usually be accom-
plished only by installing the pressure sensing element as close to the
point of measurement as possible. When such Installatlon is not feasible,
the principles presented in this paper should be applied to the design
of an appropriate pressure system. The errors inherent in such a method
should be mitigated whenever possible by a direct callbration under
conditions of use.

Langley Asronautical Laboratory
National Advisory Commlttee for Aeronautics
Langley Air Force Base, Va., January 7, 1949
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Figure 1.— Responge and phase sghift in system having negliglible instrument
volums.
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Figure 5 — Velocity of propagation in tube based on Rayleigh formule and
free—air velocity of 1000 feet per second.
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Figure 9.— Attenuation factor for 1-33-1noh—-am‘l %—inch—inaide—diamter tubes subjected to simumoldal
presgsure amplitudes of +10 inches of water.
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Figure 10.-— Response of 10 feet of -f’g—inch—inside-d.iameter tubing with

various instrument volumes to sinusoidal pressure amplitudes of
+10 inches of water.
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Figure 11.— Response of 10 feet of ii—inch—inside—diameter tubing with
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and without restrictions to sinusoldal pressure amplitudes of
#10 inches of water. '
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Figure 13.— Lag curves for 10 feet of %—inch—inside-aiamter tubing
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with various instrument volumes subjected to sinusoldal pressure
amplitudes of 10 inches of water.




